Graphs
In this lecture we introduce the graph data structure and consider three ways of its representation:

· adjacency matrix;

· adjacency list;

· list of edges;
We consider such notations as directed / undirected graphs, loops, degrees of the vertices, regular graphs, complete graphs, hanging vertices.

Directed graph is a pair G = (V, E), where V is a finite set of vertices, E is a set of edges, which is defined as a binary relation on V: E V V. A directed graph is called a digraph. Edges - loops connect a vertex to itself.
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Directed graph G = {V, E}, where
V = {1, 2, 3, 4, 5, 6}, 
E = {{1, 3}, {3, 2}, {2, 2}, {2, 4}, {5, 6}}
In an undirected graph the set of edges E is unordered pairs of vertices. An edge (u, v) in an undirected graph is incident to the vertices u and v. If the graph G contains an edge (u, v), we say that the vertex u is adjacent to v. For an undirected graph adjacency relation is symmetric. 
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Definition. The adjacency matrix of the graph G (V, E), |V| = n, is defined to be a boolean matrix A n n, that A[i][j] = 1 if and only if between verteces i and j, there is an edge. In case of a weighted graph adjacency matrix is ​​represented two-dimensional numerical matrix, wherein the A[i][j] equals the edge weight unless between nodes i and j, if exists, and A[i][j] = 0 otherwise.

Below given the examples of adjacency matrix:
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Check of the presence of edges (vi, vj) using the adjacency matrix takes time O(1). Finding all the vertices adjacent to vi, requires O(n) time (it is enough to look through the i - th line of adjacency matrix).

Statement. The adjacency matrix of an undirected graph is symmetric.
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Undirected graph and its adjacency matrix
E-OLYMP 992. Cities and roads Galaxy contanis n cities, some of them are connected with two-way roads. Given adjacency matrix of the graph. Find the number of edges in it.
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► Graph is undirected. If g is an adjacency matrix, then g[i][j] = g[j][i] for any vertices i and j. For each edge (i, j) we have g[i][j] = g[j][i] = 1. So the number of edges equals to the number of 1’s in adjacency matrix, divided by 2.
Sample adjacency matrix has six ones, so the number of edges equals to 6 / 2 = 3.

E-OLYMP 5072. Count number of edges Given adjacency matrix of the directed graph. Find the number of edges in it.
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► Graph is directed. Number of edges equals to the number of ones in adjacency matrix.
E-OLYMP 994. Colored rain Vertices of the graph are colored with three colors. Find the number of edges that connect vertices of different colors.
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► Read the adjacency matrix. Read the array of colors: col[i] contains the color of the i-th vertex. Count the number of edges (i, j) for which col[i] ≠ col[j].
If the graph contains n elements, for storage of the adjacency matrix we use n2 memory elements. If the graph is sparse (contains a small number of edges), the storage of information in the adjacency matrix is ​​not effective. To do this, use the adjacency list.

Adjacency list contains for each vertex v ( V list of vertices adjacent to it. The number of memory cells required to represent the graph using the adjacency list has order of |V| + |E|. Аdjacency list can be declared like
vector<vector<int> > g;
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E-OLYMP 3981. From adjacency matrix to adjacency list Given adjacency matrix of the directed graph. Print its adjacency list. In the i-th line first print the number of edges outgoing from the i-th vertex.
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► Declare adjacency list:
vector<vector<int> > g;

Read n – the number of vertices in the graph.
scanf("%d", &n);
Vertices are numbered from 1 to n. Resize the vector g.

g.resize(n + 1);
Read adjacency matrix. For each directed edge (i, j) add value of j to the end of array g[i].
for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

{

  scanf("%d", &val);

  if (val == 1) g[i].push_back(j);

}

Print adjacency list.
for (i = 1; i <= n; i++)

{
Print the size of g[i] first – the number of edges adjacent to the i-th vertex.

  printf("%d", g[i].size());
Print the vertices, adjacent to the i-th vertex: g[i][0], g[i][1], … .
  for (j = 0; j < g[i].size(); j++)

    printf(" %d", g[i][j]);

  printf("\n");

}

E-OLYMP 3982. From adjacency list to adjacency matrix Given adjacency list of the directed graph. Print its adjacency matrix.

► Read adjacency list and construct adjacency matrix.

List of edges is a list of pairs, where each pair represents two vertices connected with an edge. First line usually contains number of vertices n (sometimes it can contain number e of edges also). Pairs of vertices starts from the second line.
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E-OLYMP 4763. From list of edges to adjacency matrix Given list of edges of not directed graph. Print its adjacency matrix.

► For each input not directed edge (a, b) we must assign g[a][b] = g[b][a] = 1, where g is an adjacency matrix.

Declare adjacency matrix.
#define MAX 110

int g[MAX][MAX];

Read the number of vertices n and edges m.
scanf("%d %d", &n, &m);
Initialize adjacency matrix g with 0.
memset(g, 0, sizeof(g));

Read m edges. For each edge (a, b) assign g[a][b] = g[b][a] = 1.
for (i = 0; i < m; i++)

{

  scanf("%d %d", &a, &b);

  g[a][b] = g[b][a] = 1;

}

Print the resulting adjacency matrix.
for (i = 1; i <= n; i++)

{

  for (j = 1; j <= n; j++)

    printf("%d ", g[i][j]);

  printf("\n");

}

An undirected graph is called simple if it has no loops and an arbitrary pair of vertices is connected by no more than one edge.

E-OLYMP 4761. Loops Graph is given with an adjacency matrix. Determine whether it contains loops.
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► Graph contains loops if there exists such i for which g[i][i] = 1. If the diagonal of the adjacency matrix contains at least one 1, then answer to the problem is “YES”.

E-OLYMP 5073. Multiedges Directed graph is given with a list of edges. Check whether it contains multiedges.
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► Let g be an adjacency matrix.

int g[101][101];

Read the number of vertices n and the number of edges m.
scanf("%d %d", &n, &m);

Let flag = 1 if multiedges exists and flag = 0 otherwise. For each input edge (a, b) increase the value of g[a][b] by 1. 

flag = 0;

for (i = 0; i < m; i++)

{

  scanf("%d %d", &a, &b);

  g[a][b]++;
If for some values a and b the value g[a][b] is greater than 1, there exists more than one edge (a, b).

  if (g[a][b] > 1) flag = 1;

}

Print the answer.
if (flag)

  puts("YES");

else
  puts("NO");

Degree of a vertex in an undirected graph is the number of incident edges. For directed graphs there is distinguished input and output vertices; the sum of the input and output powers is called the degree of a vertex.

E-OLYMP 4764. Degrees of vertices Graph is given with its adjacency matrix. Find the degrees of all its vertices.
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► Let’s declare integer array int deg[101], where deg[i] equals to the degree of i-th vertex. First we need to read adjacency matrix.
scanf("%d", &n);

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

  scanf("%d", &g[i][j]);

Degree of the i-th vertex equals to the sum of elements of i-th row in the matrix.

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)

  deg[i] += g[i][j];

Print the degrees of the vertices.

for (i = 1; i <= n; i++)

  printf("%d\n", deg[i]);

E-OLYMP 5074. Degrees of vertices by a list of edges Undirected graph is given with a list of edges. Find the degrees of all its vertices.
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► Let’s declare integer array int deg[101], where deg[i] equals to the degree of i-th vertex. First we need to read the number of vertices and the number of edges.
scanf("%d %d", &n, &m);
For each input edge (a, b) we need to increase the degree of vertices a and b.
for (i = 0; i < m; i++)

{

  scanf("%d %d", &a, &b);

  deg[a]++; deg[b]++;

}

Print the degrees of the vertices.

for (i = 1; i <= n; i++)

  printf("%d\n", deg[i]);

E-OLYMP 993. Traffic lights There are m tunnels and n junctions, each tunnel connects two crossroads. There is a traffic light in every tunnel before every intersection. Find the number of traffic lights at each intersection.
► Problem is similar to 5074 Degrees of vertices by a list of edge.
E-OLYMP 5080. Number of hanging vertices 1 Given an undirected graph with an adjacency matrix. Count the number of hanging vertices in it. The vertex is hanging, if its degree is 1.

► Find the degree of each vertex. Count the number of vertices with degree 1.
E-OLYMP 5088. Number of hanging vertices 2 Given an undirected graph with a list of edges. Count the number of hanging vertices in it. The vertex is hanging, if its degree is 1.

► Find the degree of each vertex. Count the number of vertices with degree 1.
E-OLYMP 5076. Regular graph Undirected graph is called regular, if all its vertices have the same degree. Graph is given with a list of edges. Check, is it regular. Samples of regular graphs are given below:
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► Find the degree of each vertex in deg array. Graph will be regular, if all elements in deg array are the same.
A simple graph is called complete if every pair of vertices is connected by an edge. This graph contains 
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E-OLYMP 3987. Complete graph Undirected graph is given with a list of edges. Check, is it complete. Samples of complete graphs are given below:
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► Construct the adjacency matrix. Graph is complete if g[i][j] = 1 for any i ≠ j. Adjacency matrix must contain 1 in all positions (except the main diagonal).
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